

3C-LINK 100G QSFP28 ZR4 Optical Transceiver Module P/N: 3C-QSFP28-ZR4

Features

- ü 4 channels full-duplex transceiver modules
- ü Transmission data rate up to 27.95Gbps per channel
- ü 4 X 25/28G LAN-WDM EML Integrated TOSA Cooling transmitter
- ü 4 X PIN+SOA Receivers
- **ü** Internal CDR circuits on both receiver and transmitter channels
- ü Power consumption < 6W</p>
- ü Hot Pluggable QSFP form factor
- ü Up to 80km transmission on single mode fiber
- ü Duplex LC receptacles
- ü Built-in digital diagnostic functions
- ü Operating case temperature 0°C to +70°C
- ü 3.3V power supply voltage
- ü RoHS compliant(lead free)

Applications

ü 100GBASE-ZR4

Description

This product is a 100Gbps transceiver module designed for optical communication applications compliant to 100GBASE-ZR4. The module converts 4 input channels of 25Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba. The high performance cooled LAN WDM EML transmitters and high sensitivity APD+SOA receivers provide superior performance for 100Gigabit Ethernet applications up to 80km links.

4-Aug-21

2

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement. It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

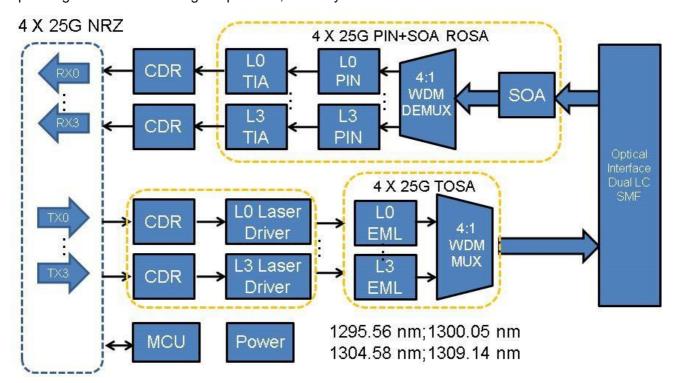


Figure 1. Module Block Diagram

Absolute Maximum Ratings

Absolute maximum Natings						
Parameter	Symbol	Min	Max	Unit		
Supply Voltage	Vcc	-0.3	3.6	V		
Input Voltage	Vin	-0.3	Vcc+0.3	V		
Storage Temperature	Tst	-20	85	°C		
Case Operating Temperature	Тор	0	70	°C		
Humidity(non-condensing)	Rh	5	85	%		

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	Vcc	3.13	3.3	3.47	V
Operating Case temperature	Tca	0		70	°C

⁴⁻Aug-21

Rev. 0

Data Rate Per Lane	fd		25.78125	27.9525	Gbps
Humidity	Rh	5		85	%
Power Dissipation	Р			6	W
Link Distance with G.652	D			80	km

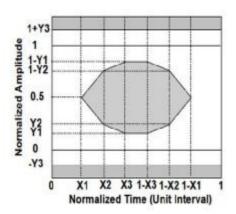
Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Power Consumption	Р			6	W
Supply Current	Icc			1.9	А
	Transn	nitter(each Lar	ne)		
Differential Input Voltage Swing	Vin			900	m∨pp
Differential Input Impedance	Zin	90	100	110	Ohm
	Recei	ver(each Lane	9)		
Differential Output Voltage Swing	Vout	300		900	mVpp
Differential Output Impedance	Zout	90	100	110	Ohm

Optical Characteristics

QSFP28 100GBASE-ER4						
Parameter	Symbol	Min	Typical	Max	Unit	Notes
Data Rate, each Lane	fd		25.78125	27.9525	Gbps	
	L0	1294.53	1295.56	1296.59	nm	
	L1	1299.02	1300.05	1301.09	nm	
Lane Wavelength	L2	1303.54	1304.58	1305.63	nm	
	L3	1308.09	1309.14	1310.19	nm	
	Transmitter					
SMSR	SMSR	30			dB	
Total Average Launch Power	P _T	6		10.5	dBm	

Rev. 0



Average Launch Power, each Lane	Pavg	0		4.5	dBm	
Difference in launch power between any two lanes(Average and OMA) between any Two Lanes (OMA)	Ptx,diff			3.6	dB	
4-Aug-21	1					
Extinction Ratio	ER	8			dB	
RIN ₂₀ OMA	RIN			-130	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	R _T			-12	dB	
Eye Mask coordinates: X1, X2, X3, Y1, Y2, Y3		{0.25, 0.4	, 0.45, 0.25,	0.28, 0.4}		1
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
		Receiver				
Average Receive Power, each lane(OTU4)		-28		-3.5	dBm	
Average Receive Power, each lane(100GE)		-29		-3.5	dBm	
Equivalent Sensitivity for Each lane(OTU4)	SEN			-28	dBm	2
Receiver sensitivity Average, each lane(100GbE)	SEN			-29	dBm	2
LOS Assert	LOSA	-38			dBm	
LOS Deassert	LOSD			-29	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			31	GHz	

Note:

- 1. See Figure below.
- 2. Sensitivity is specified at BER@5E-5 with FEC.

4-Aug-21

Rev. 0 5

Pin Descriptions

Pin	Logic	Symbol	Name/Description	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I /O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	

28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2
20	LVIIL-O	11111	interrupt output, should be pulled up on host board	
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	
38		GND	Module Ground	1

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector; should be pulled up with 4.7k 10k ohms on host board to a voltage between 3.15Vand 3.6V.

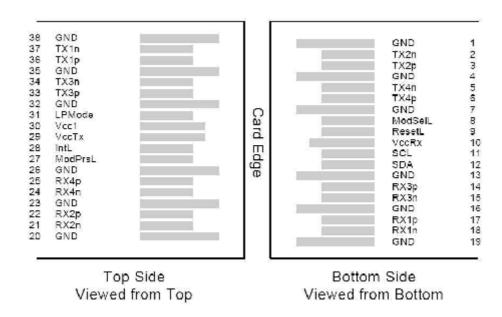


Figure 2. Electrical Pin-out Details

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire

interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host.ModSelL has an internal pull-up in the module.

ResetL Pin

Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin

3C-LINK QSFP28 module operate in the low power mode (less than 1.5 W power consumption)

This pin active high will decrease power consumption to less than 1.5W.

ModPrsL Pin

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.

DIAGNOSTIC MONITORING INTERFACE

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range

Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Digital diagnostics monitoring function is available on all 3C-LINK QSFP28 module. A 2-wire serial interface provides user to contact with module.

The structure of the memory is shown in Figure 3. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function.

The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

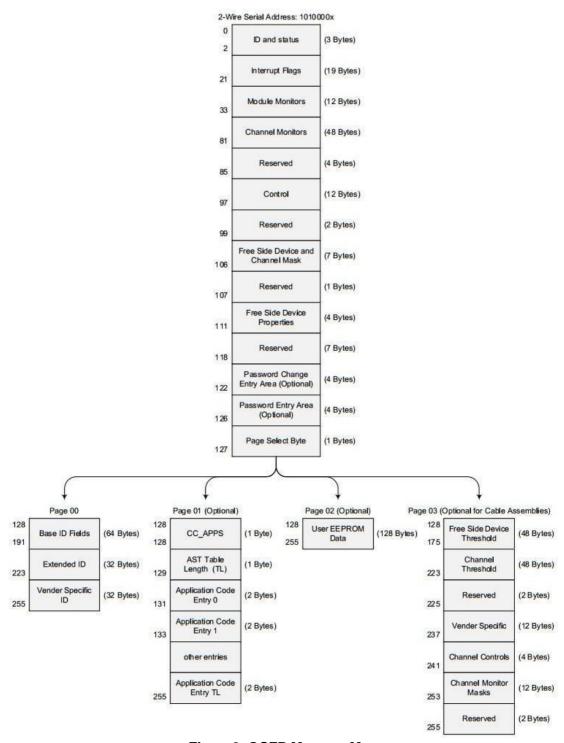


Figure 3. QSFP Memory Map

Byte Address	Description	Туре		
0	Identifier (1 Byte)	Read Only		
12	Status (2 Bytes)	Read Only		
3 21	Interrupt Flags (31 Dytes)	Read Only		
22 33	Module Monitors (12 Bytes)	Read Only		
34-81	Channel Monitors (48 Bytes)	Read Only		
82-85	Reserved (4 Bytes)	Read Only		
86-97	Control (12 Byles)	Read/Write		
98-99	Reserved (2 Byles)	Read/Write		
100-106	Module and Channel Maaks (7 Bytes)	Read/Write		
107-118	Reserved (12 Bytes)	Read/Write		
119-122	Reserved (4 Bytes)	Read/Write		
123-126	Reserved (4 Bytes)	Read/Write		
127	Page Select Byte	Read/Write		

Figure 4. Low Memory Map

Byte Address	Description	Туре		
128-175	Module Thresholds (48 Bytes)	Read Only		
176-223 Reserved (48 Bytes)		Read Only		
224-225	Reserved (2 Bytes)	Read Only		
226-239 Reserved (14 Bytes)		Read/Write		
240-241	Channel Controls (2 Bytes)	Read/Write		
242-253	Reserved (12 Bytes)	Read/Write		
254-255	Reserved (2 Bytes)	Read/Write		

Figure 5. Page 03 Memory Map

4-Aug-21

Address	Name	Description
128	Identifier (1 Byte)	Identifier Type of serial transceiver
129	Ext. Identifier (1 Byte)	Extended identifier of serial transceiver
130	Connector (1 Byte)	Code for connector type
131-138	Transceiver (8 Bytes)	Code for electronic compatibility or optical compatibility
139	Encoding (1 Byte)	Code for serial encoding algorithm
140	BR, nominal (1 Byte)	Nominal bit rate, units of 100 Mbits/s
141	Extended RateSelect Compliance (1 Byte)	Tags for Extended RateSelect compliance
142	Length SMF (1 Byte)	Link length supported for SM fiber in km
143	Length E-50 μm (1 Byte)	Link length supported for EBW 50/125 µm fiber, units of 2 m
144	Length 50 μm (1 Byte)	Link length supported for 50/125 μm fiber, units of 1 m
145	Length 62.5 μm (1 Byte)	Link length supported for 62.5/125µm fiber, units of 1 m
146	Length copper (1 Byte)	Link length supported for copper, units of 1 m
147	Device Tech (1 Byte)	Device technology
148-163	Vendor name (16 Bytes)	QSFP vendor name (ASCII)
164	Extended Transceiver (1 Byte)	Extended Transceiver Codes for InfiniBand [†]
165-167	Vendor OUI (3 Bytes)	QSFP vendor IEEE vendor company ID
168-183	Vendor PN (16 Bytes)	Part number provided by QSFP vendor (ASCII)
184-185	Vendor rev (2 Bytes)	Revision level for part number provided by vendor (ASCII)
186-187	Wavelength (2 Bytes)	Nominal laser wavelength (Wavelength = value / 20 in nm)
188-189	Wavelength Tolerance (2 Bytes)	Guaranteed range of laser wavelength (+/- value) from Nominal wavelength (Wavelength Tol. = value / 200 in nm)
190	Max Case Temp (1 Byte)	Maximum Case Temperature in Degrees C
191	CC_BASE (1 Byte)	Check code for Base ID fields (addresses 128-190)
192-195	Options (4 Bytes)	Rate Select, TX Disable, TX Fault, LOS
196-211	Vendor SN (16 Bytes)	Serial number provided by vendor (ASCII)
212-219	Date code (8 Bytes)	Vendor's manufacturing date code
220	Diagnostic Monitoring Type (1 Byte)	Indicates which type of diagnostic monitoring is implemented
221	Enhanced Options (1 Byte)	Indicates which optional enhanced features are implemented
222	Reserved (1 Byte)	Reserved
223	CC_EXT	Check code for the Extended ID Fields (addresses 192-222)
224-255	Vendor Specific (32 Bytes)	Vendor Specific EEPROM

Figure 6. Page 00 Memory Map

Page02 is User EEPROM and its format decided by user.

The detail description of low memory and page00.page03 upper memory please see SFF-8436

document. 4-Aug-21

Regulatory Compliance

3C-LINK 3C-QSFP28-ZR4 transceivers are Class 1 Laser Products. They meet the requirements of the following standards:

Feature	Standard
Laser Safety	IEC 60825-1:2014 (3 rd Edition) IEC 60825-2:2004/AMD2:2010 EN 60825-1-2014 EN 60825-2:2004+A1+A2
Electrical Safety	EN 62368-1: 2014 IEC 62368-1:2014 UL 62368-1:2014

4-Aug-21

Environmental protection	Directive 2011/65/EU with amendment(EU)2015/863
CE EMC	EN55032: 2015 EN55035: 2017 EN61000-3-2:2014 EN61000-3-3:2013
FCC	FCC Part 15, Subpart B ANSI C63.4-2014

References

- 1. SFF-8436 QSFP+
- 2. Ethernet 100GBASE-ZR4

Use of controls or adjustment or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Ordering information

Part Number	Product Description
3C-QSFP28-ZR4	100GE,OTU4, QSFP28, 100GBASE-ZR4, LAN_WDM 80km

Rev. 0 13

Specifications are subject to change without notice. It is a registered trademark of 3C-LINK Technology Co., Ltd. Other brands and product names are trademarks or registered trademarks of their respective holders. No part of the specifications can reproduced in any form or by any means or used to make any derivative such as translation, transformation, or adaptation without permission from 3C-LINK Technology Co., Ltd.

Rev. 0 14